Search results for "multi layer method"
showing 6 items of 6 documents
A one class KNN for signal identification: a biological case study
2009
The paper describes an application of a one class KNN to identify different signal patterns embedded in a noise structured background. The problem becomes harder whenever only one pattern is well-represented in the signal; in such cases, one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a multi layer model (MLM) that provides preliminary signal segmentation in an interval feature space. The one class KNN has been tested on synthetic and real (Saccharomyces cerevisiae) microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.
A MULTI-LAYER MODEL TO STUDY GENOME-SCALE POSITIONS OF NUCLEOSOMES
2007
The positioning of nucleosomes along chromatin has been implicated in the regulation of gene expression in eukaryotic cells, because packaging DNA into nucleosomes affects sequence accessibility. In this paper we propose a new model (called MLM) for the identification of nucleosomes and linker regions across DNA, consisting in a thresholding technique based on cut-set conditions. For this purpose we have defined a method to generate synthetic microarray data fully inspired from the approach that has been used by Yuan et al. Results have shown a good recognition rate on synthetic data, moreover, the $MLM$ shows a good agreement with the recently published method based on Hidden Markov Model …
A one class classifier for Signal identification: a biological case study
2008
The paper describes an application of a one-class KNN to identify different signal patterns embedded in a noise structured background. The problem become harder whenever only one pattern is well represented in the signal, in such cases one class classifier techniques are more indicated. The classification phase is applied after a preprocessing phase based on a Multi Layer Model (MLM) that provides a preliminary signal segmentation in an interval feature space. The one-class KNN has been tested on synthetic data that simulate microarray data for the identification of nucleosomes and linker regions across DNA. Results have shown a good recognition rate on synthetic data for nucleosome and lin…
Interval Length Analysis in Multi Layer Model
2009
In this paper we present an hypothesis test of randomness based on the probability density function of the symmetrized Kulback-Leibler distance estimated, via a Monte Carlo simulation, by the distributions of the interval lengths detected using the Multi-Layer Model (MLM). The $MLM$ is based on the generation of several sub-samples of an input signal; in particular a set of optimal cut-set thresholds are applied to the data to detect signal properties. In this sense MLM is a general pattern detection method and it can be considered a preprocessing tool for pattern discovery. At the present the test has been evaluated on simulated signals which respect a particular tiled microarray approach …
A Fuzzy One Class Classifier for Multi Layer Model
2009
The paper describes an application of a fuzzy one-class classifier (FOC ) for the identification of different signal patterns embedded in a noise structured background. The classification phase is applied after a preprocessing phase based on a Multi Layer Model (MLM ) that provides a preliminary signal segmentation in an interval feature space. The FOC has been tested on synthetic and real microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.
A new Multi-Layers Method to Analyze Gene Expression
2007
In the paper a new Multi-Layers approach (called Multi-Layers Model MLM) for the analysis of stochastic signals and its application to the analysis of gene expression data is presented. It consists in the generation of sub-samples from the input signal by applying a threshold technique based on cut-set optimal conditions. The MLM has been applied on synthetic and real microarray data for the identification of particular regions across DNA called nucleosomes and linkers. Nucleosomes are the fundamental repeating subunits of all eukaryotic chromatin, and their positioning provides useful information regarding the regulation of gene expression in eukaryotic cells. Results have shown a good rec…